EVALUATION OF THE PARETO FRONTIER APPROACH FOR MODEL CALIBRATION

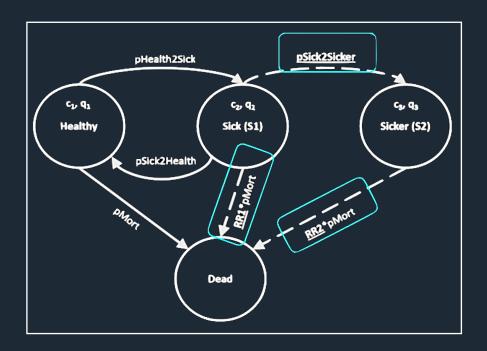
Paul Peter Schneider¹, Wael Mohammed¹, Robert Smith¹

ScHARR, University of Sheffield, Sheffield, UK

OBJECTIVE: We conducted a simulation study to assess the performance of the Pareto Frontier approach against a conventional distance-based (unweighted) sum score.

PARETO FRONTIER

- The Pareto Frontier is model a calibration method, recently proposed by Enns et al. (2015)
- A set of input parameters is on the Frontier, if you cannot improve the fit on one target without reducing it on another (see right figure)



IMPLEMENTATION

The study was conducted in R v4.0. The rPref package was used to identify Pareto optimal sets. We used a 64-cores AWS instance and parallelisation to execute the >500 mio. model runs.

The source code is available at: github.com/bitowaqr/pareto_frontier

Paul Peter Schneider University of Sheffield, UK p.schneider@sheffield.ac.uk 🗲 @waq0r

The University

Key reference: Enns EA, Cipriano LE, Simons CT, Kong CY. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach. MDM. 2015 Feb;35(2):170-82.

SIMULATION PSEUDO CODE

- for i = 1 to 10,000
- 1. Specify a true model:

2. Generate calibration target sets:

3. Run model calibration:

4. Evaluate calibration performance:

Target 1

SICK-SICKER MODEL

- We used the same cohort state transition model that Enns et al. presented in their paper (see left figure)
- It has 3 unknown parameters that need to be calibrated
- We tested 4 target sets, consisting of 2-5 targets

- Randomly draw values for all (known and unknown) model parameters - Compute the true incremental net monetary benefit (iNMB)

- Run a micro-simulation to generate stochastic targets

- Generate 50,000 candidate input sets - For each set, compute differences between model outputs and targets - For each of the 4 target sets,

select the inputs that:

- lie on the Pareto Frontier

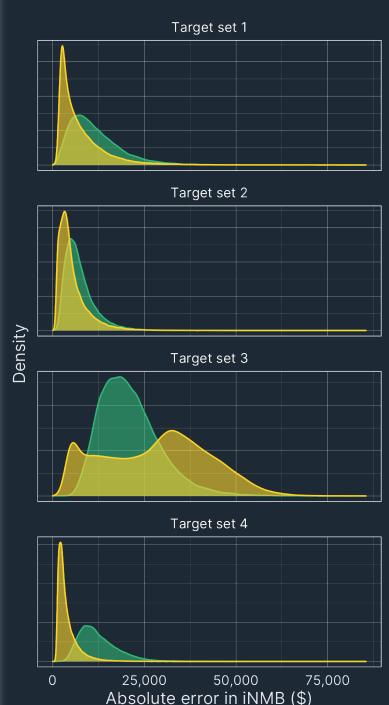
- are among 1% with the lowest sum of absolute errors

- Compute the mean iNMB across selected input sets and compare it against the true iNMB

SAMPLE RESULTS FOR i = 1

- The right figure shows exemplary results for one simulation run
- Here, the sum score calibration performed better than the Pareto Frontier approach: the mean absolute error in iNMB was 977 vs. 19,091.

MAIN RESULTS



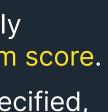
Mean (SD) absolute error in iNMB		
Target set	Pareto Frontier	S
1	11,600 (7,032)	7,5
2	7,403 (4,151)	5,3
3	21,095 (8,097)	28,
4	12,461 (5,444)	3,9

- The sum score method provided more accurate mean iNMB predictions for 3 of 4 target sets
- Models calibrated with the Pareto Frontier approach performed better only when using Target Set 3*
- The mean (SD) number of sets on the Frontier was 601 (984)
- Identifying Pareto optimal inputs was computationally demanding

***Note:** Target set **3** consisted of 3 proportions (range: 0-1) and 1 ratio (range: 0-Inf.). When target trade-offs are (mis-)specified like this, it is not surprising that a sum score performs poorly.

CONCLUSION

- 1) The Pareto Frontier model calibration method generally performed worse than the simple, distance-based sum score.
- 2) However, when trade-offs between targets are misspecified, the Pareto Frontier may provide less biased results.



- 185 (14,337) 905 (2,859)
- um score 605 (6,381) 368 (4,104)
- 80,000